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THIRD OVERTONE QUARTZ RESONATOR

R.D. Mindlin
89 Deer Hill Drive, Ridgefield, CT 06877, U.S.A.

ABSTRACT - The Lee-Nikodem equations of motion of elastic plates are solved

for the case of vibrations of an AT-cut quartz strip, with free faces and

edges, at frequencies up to and including the third harmonic thickness-shear

overtone.

1. Introduction

About 30 years ago, A.W. Warner [1] developed a high precision

crystal-plate resonator utilizing the third harmonic overtone of thickness-

shear vibration, i.e. a mode involving a thickness-shear motion with three

nodes across the thickness of the plate rather than the one node of the

fundamental thickness-shear mode. At about the same time, equations were

developed which extended the classical (Lagrange-Germain-Cauchy) range of

frequencies to include that of the fundamental thickness-shear mode; but it

was not until much later that Lee and Nlkodem [2,3] formulated equations

suitable for studying vibrations at frequencies of the harmonic overtone

modes of thickness-shear.

In the present paper, the Lee-Nikodem third-order equations are

solved for a case of rotated-Y-cut quartz plates with free faces and a pair

of parallel, free edges. The results of computations for the AT-cut plate
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are presented for vibrations in the neighborhood of the frequency of the

fundamental thickness-shear mode and in the neighborhood of the third

harmonic overtone. The differences between the two exhibit some of the

reasons for the higher stability of the latter.

2. Lee-Nikodem Equations

To obtain two-dimensional equations of motion of plates from the

three-dimensional equations of linear elasticity, Lee and Nikodem start with

an expansion of the three-dimensional, rectangular components of displacement,

ujj=1,2,3, in series of trigonometric functions of the thickness-coordi-

nate, x2 , of the plate:

T~cces 5 c"-,

.(n).. .Tt
j = nu cos no, : (1)

i: .(~n) "-"
where the u, are independent of x2  and

B i~ -x/b)/2 12)

in which b is the half-thickness of the plate. The functions cos no give

the shapes of the simple thickness-modes of an infinite, isotropic plate with

free faces at x2 a+ b.

The expression (1), for the uj , is substituted in the variational

equation of motion [4]:
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vTij - pUj)6ujdV = 0 (3)

where the T1j are the components of stress, p is the mass density and

V is the volume. The integration is performed over the thickness of the

plate and leads to stress-equations of motion of order n ; which are,

omitting the terms accounting for surface tractions,

T(n) - (nr/2b)Tn )  = enpun) , (4)ij 2

where

T.b b

"I = 1 f T j cos no dx2, Tij - b 1 f Tj sin no dx2
-b -b

(5)

and en -2 for n=0 and en=1 for n>0. (Corrections of [3] by a

factor of 2, for n-0, were kindly supplied by Professor Lee).

The three-dimensional strain-displacement relations,

S(uj,j + u ,j)/2 , (6)

become, with (1),

S 2j.n (Sij cos nBo+ ij) sin no) , (7)

n=0 l

where
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sn) (u. n + n) in) i n(6 n) + 6 un))/4b (8)ij ' i,j /  2ij 2i n i 2 (8

and 6ii is the Kronecker delta.

The three-dimensional stress-strain relations,

T = Cijk Sk i,j,k,k =l,2,3 or Tp = c=S p ql...6, (9)

become, from (5) and (6).

T(n) c (e S (n) +(Am )) + An(
ij ijk cn.mek ' = CijkXL Wn nm Sm)) (

where

Am = 0, m+n even; 4m/(m -n )w, m+n odd. (11)

The components of stress (10) are derivable from a strain energy

density. U , according to

BiIJ SjI i - , 3 (12)
I

where

2U x cljk [e eni)S ) + S(n)(n) + ' (ASnn)(m) + A n in))]
ij k. ij kk. n 3 k.

(13)
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3. Reduction to a Special Case

The example to be studied is one of steady vibrations at frequencies

high enough to include the third harmonic overtone of the thickness-shear

family of modes of an AT-cut quartz plate bounded by free faces at x2 =+ b

and free edges at x1 = +a. The modes are to be straight-crested along x3

and antisymmetric with respect to both x, and x2 . Thus, we take, of (1),

only

uU u ( (= ) CosO + u os 30) e wt

u (u O) + u(2) cos 20) ewt, (14)

(0) + u(2) cos 20) •iwt

u M 3

in which the (n) depend only on x1 . The second term in u1  accommodatesw h

the third harmonic overtone thickness-shear mode.

What remain of the stress-equations of motion (4) are

(0) 2u(0) T( )  +2 2u °) (0)
1 +2 2 = O 13,1 PwU 3

(2)s

-~) ''/2b1'~1 ) +pwa 2u(1) 0= (2) / )(2) +Pwu(2 )
11,1 21 + 1 0 T12,1 -(/)1 22  + 2(2

-(7r/b) T() + w2u(2) =0, 1 (3 r~)~+ 2 ) 0

(15)

?* and the only non-zero components of strain are, from (8) and (14),
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s°) u() So) = u(O)
S3,1 6 2,1

=sl) =up) 9() a (7r/2b)ulI)

s(2)  u(2 )  s (2 )  - (2) (16)5 3,1 6 2,1 '

g(2) (7rb)U(2) S(2) (w/ (2)
2 = 2  4 u(/u 3

S () () (3) 37r/ 2b)u (3)

Nine constants of elasticity, referred to axes in and normal to the

plane of the plate (with x I an axis of two-fold symmetry of the elastic pro-

perties of quartz). enter into the present example. As computed by A. Ballato

[5] from R. Bechmann's [6] principal constants, they are (in N/rn 2l )10

c * 86.74 C 12  ' -8.260543013 c 55  '68.80698505

= 2 129.7663387 c 24  = 5.700423178 c 66  ' 29.01301496

C4 38.61152627 C 14  = -3.654869573 c 56  = 2.533571817

Of the remaining twelve constants, four (c13  c23  3 ,c do not enter

into the present example, as the modes are independent of x3 and the others

(c 15' C25' c35' c45, c16 ' C2 6 , C36' C46) are zero for the rotated-V-cuts of

quartz.

Lee and Nikoden iIntroduce a low frequency correction factor k1 and a

high frequency correction factor k. The former appears as a factor of A 10
in the strain energy density appropriate to the present example:

'I-
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2u = 2(c s(O)s(O) + c s(°)s(O) + 2c s(°)s(° )+ c1S 1

55 5 5 66 6 6 56 5 6 1 1

+ C S(2)S(2) + c qS(2)S (2) + 2c S(2)S(2) + c S(3)S(3)"55 5 5 66-6 6 56 5 "6 11 1 1
+ S(2)S(21 + c S(2)S (2) + 2c (2S(2) + c( + 3

222 2 44 4 4 2432 4 666 6 666 6

+4 2k A ++A()()gl
I lkA1 (c66S6(0 ) + C56S5(0 )S(1 + 12(c66S62  + 5S 6

+ 2A21(C S(2) + SOS3)+ 2A (2 14 ) S3)

(17)

where

AIO - 4/w1 A12 - -4/3w" , A21 ' 8/ 37r

A 23 - -815,f A A30 = 4/13'," , A32 = 12/5w1"

The correction factor k2 , In the present example, is inserted as a divisor

of the term 2pw 2u( 0 )-  in the first of (15).

Adjusted values of k and k2 , as supplied by Professor Lee, are

2 2

kc 2 2r /8 ,k 2  0.901. (19)

From (12), (17) and (16), the surviving stress-displacement relations

are
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T(O) = 2[c u(0 ) + c (0) + kblup() + b' u (3)

13 55 3,1 56(u2 ,1  1  1 (

T( ) = 2[c u(0) + c (0) + kb'1 u(l) + b'1u( 3 )

12 56 3,1 c66( 2,1  1 1 1

T(1) = c (1) + (8 (2) (2)
11 1,1l' /b( 12u2  +c 14u3  )*

T(2) =  c u(2) + c (2) (2/3b)u ) + (18/5b) U(3)]

13 55 3,1 56[u2,1 -

T(2) = c u(2) + c (2) _ (2/3b)u(l) + (18/5b)u(3 )]

12 56 3,1 66E 2,1 1 1

T(3)  = c u(3)  + (8/5b)(c lU1 
2)  + C (U2))

ll 11 12,14

=(i) (4kl/i)(c u(0 )+ (0) ) +(12b)c66u
l) - (4/3w)(c 56U2 +c66 U2)

12 1 56 3,1 66 2,1 66 1'6M 6 ,

T(2) = (1) (3,/) (2)i(2
22 = (8/70,c12 (u1 ,1/3 - u 105) + (./b)(c.,u (' + C2))

r(l) = (8/r)c ()(u1 /3 -u(3) / + (7,,b)(c U(2) + c U(2)
23 41,1 24u2  44u3

T1) = + c 6 6 u
(0  + ( 1215) (2) + (2) (3)

12 =c53,2156 3,1 C66 U2 ,1) +(37r/2b)c 66u

The displacement equations of motion, to be solved, are obtained by

substituting the stress-displacement relations (20) into the stress-equations

of motion (15) --with k2  inserted in the first of (15), as mentioned

previously.

Finally, the edge conditions are

T(0 )  T(0) T1) T (2) T(2 ) =T (3) =0 on x =+a, (21
13 12 11 13 12 11 - (
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4. Dispersion Relation

In (14) we take, omitting the factor e iWt

'! and substitute first in (20) and the result in (15) to produce a set of six

simutanous hoogeeou, ]nea alebric quaion inthe six amplitudes

A(2) (f2)2)

a22 ) = 2A(O) +x 0 z 2A si E,

() A() A() a siAxu(2) = A 2 ) 0i Ex 0 22
23 3 334 353 (3

0ofe a A() cosnles ( ) = A y s &i

simutaeuts, moeneulna leri qainntesxapiue

0 A 'a A.+a A( 0 +a 0 + a(3) 0

12 12 3 5131 452 aA 1

a A(O + a 0 + 0 +a. A (2 +a A (2) + 0 =

162 26 42 4563 I6 A

The coefficients a, q made dimensionless and real by some manipulations

of the equations, are
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all = 2( 2 .Q2/k2), a12  2E56z2 a1 3 a 4klz 2f., a16 = 4z2/ r

a a22 = 2(E552z2), a23 4kB 56z 2/w, a26 = 4E56Z2/7.,

a a33 a (Ell z2 +1 -S2)z 2, a34 = -4(l+4212)z 2/3"r, a35 = 4(4E14 -_E56 )z 2/31T

(24)

44 z + 4E 22 -a2 a45 = 4c24 + Z56z2, a46 = 4(9 + 4c12)z2 /5ir

a55  z + 4c a a56  4 + 2
550E55 4 44  5 (6c14  9 56)z /w

a 6 = (-2 + 9 " 2 2)z2

where

Z 2F&b/w, Q w/l, 2 72c 66/4pb2  E = Cpq/C66

i.e. z is the ratio of the thickness of the plate to the half-wave-length

along the plate and Q is the ratio of the frequency to that of the funda-

mental thickness-shear mode of the infinite plate.
.(n) steult eo

The determinant of the coefficients of the Ai set equal to zero:

japql = 0 (25)

in which a1 4 = a1 5  2 a4 • a25 = a3 6 = 0 apq = aqp produces the dis-

4 2
persion relation Q vs. z : a sextic, algebraic equation in z The

equation is the same as (43) of [3) except for the factors 2 in all, a12, a22

as already noted above in connection with (4). Also, here, all the elements

apq are real as a result of multiplication of the third and sixth rows and

columns by z.
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The six branches of the dispersion relation, computed on the HP-85

micro-computer, are illustrated in Fig. 1. The characters of the branches

are indicated by their identifying symbols:

F = Flexure

FS = Face-shear

1 = 1st Thickness-shear (in xl-direction)

23 = 2nd Thickness-shear (in x3-direction)

31 = 3rd (Harmonic) Thickness-shear (in xI-direction)

22 = 2nd Thickness-stretch (in x2-direction)

The subscripts in the symbols 1l, 23, 3l, 22 designate the direction of

displacement (or predominant displacement) at z =0 , whereas the numbers

themselves give the number of nodes between x2 = +b. Thus: in 23 the

displacement at z =0 is predominantly in the direction of x3 with two

nodes across the thickness of the plate. Note that the roots z for branches

F and FS are real for all 0 , but the roots for the remaining four

branches may be real or imaginary, depending on the frequency. If imaginary,

the variation of displacement along x, is exponential or hyperbolic rather

than trigonometric.

The zigzags in the curves in Fig. I result from the spacing of dots

on the cathode ray tube display of the HP-85. The figure is the HP-85's hard

copy of the CRT display. The roots z were actually computed to an accuracy

of 10"9 -- a precision required for their subsequent use in solving (34) and

(37). Intervals of 0.02 in I1 were employed for Fig. 1, resulting in a com-

putation time, for the range 0<Q<4, of about 6 hours or about 18 seconds
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per root. The secant iterative method was used, with starting values given

by the following approximate formulas, followed by increments of 10"6 in

z2Zn:

I : _ 6.42258(l+G)S2[1 + (l+K) J/Tr2  (26)

G = 2/12(c - 12 /E 2 ), K = 4G(Q" -1 )/(l+G)2  (27)

FS z = 0.44119 2 (28)

23

2.229(a2/a I_), a < Q
3 4 2 2 (29)

22 : z = 16(a 2/a 2 - 1), a > 12 (30)

2 2 2 + 4E'~- ~ (31)1149 1 2(E22 +cE44  L UE22 -E44) c24 1

~0.33799(Q2 - 9)9 a < 3

31 : Z 2  (32)5 10.40651(il2 _9), 11 > 3.

These trial roots match closely or exactly the roots of the sextic at z =0

. and at Q=0,3 (except z6  at Q =3) resulting in trial values adequate

for convergence of the iteration for all O< 1<4.
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5. Frequency Spectrum

For each of the roots z2 of (25), five amplitude ratios, say

A(0)IA(1) A(0)IA (1) A (2)/A(1 ) -a A(2)/A(1 ) A (3) A(1)

2 1 in 3 1 2n' Z I 3n' 3 1 4n' I I 5n

(33)

may be found from five of the six equations (23). Thus, with the third of (23)

omitted, we may write

a11 (zncxln) + a1 2 (zn(2n) + 0 + 0 + a16c5n -a13

a12(znc'ln) + a22(zr2n) + 0 + 0 + a 25n = -a23

0 + 0 + a44(znc3n) + an5(znx4n) + a46 5n = -a34, (34)

0 + 0 + a45(zni3n) + a5 5(Znc 4 n) + a56 5n - -a 35

a16(ZncIn) + a26 (Znc 2n) + a46(Znu3n) + a56(ZnP4n) + a66e5n 0 .

This for is chosen because the Znctln9 Zn2nI Zn3nI ZnC4n and a5n are

real for all 12 , as are also the apq -- as arranged previously.

With the six z from (25) and the thirty apn determined from (34),

we may now write, in place of (22):
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6 6

40 = Anln sinnl , = D n2n sin n ,

= A, 2 An3n s nXl

u 62 2A sin A'C(35)

3 n, An4n &nXl I = n5n [nl I
3

Upon substituting the displacements (35) in the formulas (20) for the

stresses and the results in the edge conditions (21), we have the six equations:

Anb m  a O, nr1...6, (36)

where

bIn = ( 56znaln + c55Zna2n + 2kE 56/ A + 2E56a5n/f)cos z 
L

b2n ' (Znaln + E56zna2n + 2k1/v + 2a5 ,/w)cos Z n ,

2 + 6n3/3 + 16E14n /3)^zn 1 sin z
b 3n - (-E 1 l~Zn Ln 4an nn

h b4n - (-4E56/37r + E56Zn"3n + E55Zna4n + 36E5etn/5r)COS 
Zn (

b 5n - (-4/ 3,f + ZncL3n + Es6ZnOL4n + 36a Sn /5i)cos z  ,

- 2 --.1snL

b6n a bn12zna3n/An + 16E014Zn4n/5' + Ell ni5n zn Sin Zn L

in which 'Zn a wz n/2 n nb g I -a/b and the bran are real for all a
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The roots Z of the equation obtained by setting the 6x6 determinant

of the coefficients of the An * in (36), equal to zero:In
IbmI = 0, (37)

produce the data for plotting a frequency spectrum 1 vs. a/b.

The results of computations in the two ranges:

0.99 < 1 < 1.01 16 < a/b < 24

and

2.995 < 1 < 3.005, 18 < a/b < 22

are illustrated in Figs. 2 and 3. To construct these figures, the six roots

zn of the sextic (25) were first computed for a given Q. Then the five

linear equations (34) were solved for the apn for each of the six zn and

the resulting combinations of apn and zn substituted in the transcendental

equation (37), after which the range of L(= a/b) was traversed in steps of

0.1 for Fig. 2 and 0.025 for Fig. 3 and the value of Ib I computed at

each step. A change of sign of Ibnml indicated a straddled root Z which

-3
was then determined to 10-  by successive linear interpolations. The process

05

was then repeated at intervals of a of 5x10 - . Figs. 2 and 3 required

about 58 and 49 hours of computation, respectively, on the HP-85.

In Fig. 2:

F22...30 are overtones of flexure

FSII...15 are overtones of face-shear

111 is the Ist thickness-shear (fundamental).
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In Fig. 3:

F62...74 are overtones of flexure

FS37...41 are overtones of face-shear

1133...35 are anharmonic overtones of the Ist (fundamental)
thickness-shear

2323...27 are anharmonic overtones of the 2nd transverse
thickness-shear

311 is the 3 harmonic thickness-shear overtone.

The numbers following the symbols F, FS, 11, 23 and, 31 designate both the

order of the overtone and the approximate number of half-wave-lengths between

X1 =+a.

Fig. 2 illustrates the well known phenomenon of strong coupling of the

1st thickness-shear fundamental with flexure overtones and weak coupling with

face-shear overtones. Fig. 3 shows that the 3rd harmonic thickness-shear

mode has moderately strong coupling with flexure overtones and weak coupling

with face-shear overtones and, in addition, weak coupling with transverse

thickness-shear overtones. As for the Interaction of the 3rd harmonic thick-

ness-shear overtone with the anharmonic overtones of the fundamental thickness

shear, the coupling is moderately strong at small a/b (thick plates and low-

order anharmonic overtones) and diminishes as a/b increases (thin plates and

increasing order of anharmonic overtones).

Finally, the minimum absolute values of the slopes of the segments 11

are much larger than those of 3 11 . For large a/b , the ratio of those

slopes is approximated by the ratio of the curvatures of branches 31 and 11

at zO in Fig. 1. The exact values of those curvatures, in the three-

dimensional theory, were given by Eksteln [7, Eq. 56):
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K [d d2 i/dz 21 k + Ccot(nr/2 c ) + D cot(nrr/2 c )n z=O2

where

k = (cEll + A + B) n=1,3,5....

A = [(l+E 12)cos e + (c14 + c56)sin e12/(I-c 2)

B = [C(c14 + E56)cos e - (l+E12)sin el2/(1-c 3)

C - 4[(c 2 + E12)cos e + (c2E56 + c14)]2 /n2 c2(1-c 2)2 9

D = 4[(c 3 + E12)sin 6 - (c3E56 + E14)]2/n2  2(1-c 3)2 ,

* 1 c2 ,c 3  = (c22 + E44 ± [(E22 - E44)2 4c24J}/2

tane - E24/(c2 - E44)

For the present case, the curvature ratio k1/k3  is 4.7 and that is the

ratio of the slopes.

The large ratio of slopes and the absence, at large a/b, of strong

coupling with all overtones except those of flexure (which, at such high over-

tones, have very small amplitudes) are important contributors to the high

stability of third harmonic overtone resonators.

L1
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